欢迎您访问广东某某机械环保科有限公司网站,公司主营某某机械、某某设备、某某模具等产品!
全国咨询热线: 400-123-4567

哈希游戏

哈希游戏| 哈希游戏平台| 哈希游戏官方网站

haxiyouxi-haxiyouxipingtai-haxiyouxiguanfangwangzhan

氨基葡哈希游戏- 哈希游戏平台- 官方网站萄糖硫酸盐

作者:小编2025-10-28 20:30:35

  哈希游戏- 哈希游戏平台- 哈希游戏官方网站

氨基葡哈希游戏- 哈希游戏平台- 哈希游戏官方网站萄糖硫酸盐

  各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统()在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订

  EZ硫酸盐分析仪在垃圾焚烧厂中的应用哈希公司 Yesterday背景介绍Attero 是荷兰的一家大型生活垃圾焚烧厂,在了解到Hach的EZ1036硫酸盐分析仪后, 他们主动联系了Hach公司了解硫酸盐分析仪的情况。该公司的污水处理厂一直在使用Hach在线和实验室设备。在荷兰南部的Moerdijk,Attero运营着一家具有烟气净化设施的生活垃圾焚化厂,通过石灰洗涤和由此产生的石膏沉积来去除烟气中的硫酸盐。在这一工艺过程的出水中,需要实时监测向地表水排放的硫酸盐。当地环保部门对硫酸盐有严格的监控标准,必须使用在线仪表监测硫酸盐浓度。 EZ1036 硫酸盐分析仪应用情况到目前为止,Attero一直在使用EZ系列的硫酸盐分析仪,但在使用过程中,客户发现由于废水中石膏浓度较高,硫酸盐分析仪在使用过程中管路很容易堵塞。Hach公司根据客户的现场实际情况,提供了新的解决方案,方案由内部稀释的EZ1036硫酸盐分析仪和EZ9250过滤单元组成,能够改进分析仪正常运行时间,减少人工干预。改进后,现场的EZ1036硫酸盐分析仪持续运行了6周不需要任何维护,而在以前,每 2 天就需要维护一次。EZ1036硫酸盐分析仪的标准量程是10-40mg/L, 丰富的内部稀释装置可以帮助客户拓展测量范围,不仅能够测量低浓度硫酸盐,也可以测量高浓度的水样。图1 Attero垃圾焚烧厂总结EZ硫酸盐分析仪的测量量程范围丰富,可以配置内部稀释装置,极大地丰富了硫酸盐可测量的浓度范围。在垃圾焚烧厂硫酸盐监测中,配套EZ9250预处理器,可以稳定的在含有石膏浆液的废水中监测硫酸盐,同时提高仪器的在线时间,减少客户维护量与维护成本。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!

  什么是钠、钾元素?钠是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压;维持体内酸和碱的平衡;钠对ATP的生产和利用,肌肉运动,心血管功能,能量代谢都有关系,此外糖代谢,氧的利用也需要钠的参与;同时钠可以维持血压正常,增强神经肌肉兴奋性。与钠相对,人体中的钾主要(95%以上)在细胞内部,是细胞液中主要的正离子。钾参与糖类、蛋白质的正常代谢。葡萄糖和氨基酸经过葡萄细胞膜进入细胞合成糖原和蛋白质是必须有适量的钾离子参与;维持细胞内正常渗透压,由于钾主要存在于细胞内,因此钾在细胞内渗透压的维持中起着主要作用;维持细胞内外正常的酸碱平衡,钾代谢紊乱时,可影响细胞内外酸碱平衡。钾和钠一起作用,维持体内水分的平衡和心律的正常(钾在细胞内起作用,钠在细胞外起作用);钾和钠平衡失调时会损害神经和肌肉的机能。 实验 本实验根据中国药典2020年版四部通则0406来进行,采用日立ZA3000原子吸收分光光度计进行测试。实验过程:1.复方乳酸钠葡萄糖注射液中钠元素测定配置0μg/ml,2μg/ml,2.5μg/ml,3μg/ml,3.5μg/ml,4μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 2.葡萄糖氯化钠钾注射液中钠元素测定配置0μg/ml,0.9μg/ml,1.35μg/ml,1.8μg/ml,2.25μg/ml,2.7μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 3.复方葡萄糖电解质MG3注射液中钾元素测定配置 0μg/ml,1.5μg/ml,2.25μg/ml,3μg/ml,3.75μg/ml,4.5μg/ml浓度的标准溶液,同时提取注射液样品中的钾元素,标准溶液及样品液制备完成后,上机进行测试。 喷入空气-乙炔火焰,在高温火焰中形成的钾基态原子对钾特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钾的浓度成正比。 测试结果:结论本次实验对注射液中提取的钠、钾元素进行测试。结果表明,日立ZA3000可以对特征波长589nm的钠元素和766.5nm的钾元素进行准确稳定的分析,测试结果不受注射液中其它共存物质的背景影响,方法稳定可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。

  RO反渗透系统氯和亚硫酸盐过程控制应用解决方案众所周知,工业生产中会涉及到众多的反渗透(RO)系统,这些系统如果不采用一些氧化剂或者生物杀菌剂,就会极易受到生物污染,从而会导致该系统功能退化和膜的寿命显著下降,所以在这个过程中,一般都会加入氯(Cl2)来消灭大多数的致病微生物。然而,在反渗透(RO)系统中,膜极易受到进水中氯的破坏,这会导致较低的盐排斥率和较差的渗透。用户不得不频繁的更好价格昂贵的RO反渗透膜,以及面对频繁的设备停机。为了保护反渗透(RO)系统,氯的残留必须要维持到一个非常低得浓度,用户在除氯的过程中,一般采用颗粒活性炭(GAC)来消除水中的氯,那么实时监测GAC系统的健康状况,就变得尤为重要,这就需要一个非常灵敏、准确且易于使用的仪器来完成这项任务,但是传统的DPD法或者安培滴定法都存在一定的局限性。 另外,亚硫酸氢钠经常被用于降低进入反渗透系统(RO)中的氯,在这个过程中,亚硫酸氢钠的用量至关重要,因为亚硫酸氢盐会与溶解物发生反应,让水中的氧气导致厌氧生物生长加速,从而迅速污染反渗透(RO)系统。 但是由于氯或次氯酸盐的浓度会随着其年龄的变化而变化,因此获取氯或次氯酸盐的难度很大,这也意味着监测亚硫酸氢盐是困难的。传统的亚硫酸盐分析方法存在着一定的局限性,比如量程,准确性,精确度和易用性。即使不存在氯,过量的亚硫酸氢盐会降低pH值,也会导致ORP读数增加,这样会导致控制系统提示需要加入更多的亚硫酸氢盐,最终产生生物淤积,降低了膜的使用寿命。由此可知,一个灵敏、精确和易用的氯监测和亚硫酸盐检测仪器,对解决用户上述的痛点至关重要,传统的DPD法或者安培滴定法存在量程、精确性和易用性等方面的局限性,因而市场上缺乏可以真正解决用户这些痛点的在线或实验室,亦或者两者相结合的整体解决方案。哈希公司一直致力于对氯参数的分析和研究,在该领域拥有超过60年的技术研究历史,深厚的技术积淀为用户找到了一套切实可行的在线和实验室超低量程氯和亚硫酸盐监测方案提供了可能性。ULR CL17 sc总氯分析仪DR 1300 FL荧光比色计ULR CL17 sc是哈希最新推出的一款超低量程的总氯分析仪,它的量程范围可达0 – 5 PPM,并且检出限可以做到8ppb, 是一款非常灵敏型和准确性的过程仪表,它既可以单独用于过程中超低浓度总氯的检测与控制,也可以配套最新上市的DR 1300 FL荧光比色计,这是一款实验室用途的分析仪,是采用荧光原理来监测RO反渗透系统进水中的超低浓度的总氯、余氯和亚硫酸盐等参数,ULR CL17sc和DR 1300 FL一起组成了哈希在RO反渗透系统中对超低浓度的氯和亚硫酸盐等参数的检测,为保护用户重要的设备和资产,以及过程工艺中精确控氯和加亚硫酸盐提供了科学的决策依据,帮助您降低生产成本,提高运营效率,创造更大价值。END

  中德两国研究人员21日说,他们破解了北京及华北地区雾霾最主要组分硫酸盐的形成之谜,发现在大气细颗粒物吸附的水分中二氧化氮与二氧化硫的化学反应是当前雾霾期间硫酸盐的主要生成路径。这一发现凸显在继续实施减排措施的同时优先加大氮氧化物减排力度对缓解空气污染问题的重要性。近年来,北京及华北地区雾霾频发。已有研究表明,硫酸盐是重污染形成的主要驱动因素。在绝对贡献上,重污染期间硫酸盐在大气细颗粒物PM2.5中的质量占比可达20%,是占比最高的单体;在相对趋势上,随着PM2.5污染程度上升,硫酸盐是PM2.5中相对比重上升最快的成分。因此,硫酸盐的来源研究是解释雾霾形成的关键科学问题。清华大学贺克斌院士、张强教授、郑光洁博士和德国马克斯·普朗克化学研究所的程雅芳教授、乌尔里希·珀施尔教授、苏杭教授等人当天在新一期美国《科学进展》杂志上报告说,他们运用外场观测、模型模拟及理论计算等手段发现,在北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。颗粒物结合水是指PM2.5在相对湿度较高的环境下潮解所吸附的水分。该结论与通常认为的硫酸盐形成机制有较大不同。现有基于欧美等地区的经典大气化学理论认为,硫酸盐主要是在云水环境中形成,由于云中的液态水含量远高于颗粒物结合水,通常高出1000到10万倍,所以与云水中的硫酸盐生成反应相比,颗粒物结合水中的反应可以忽略;理论计算还显示,在云水反应路径中,二氧化氮氧化二氧化硫生成硫酸盐这一路径的贡献也可忽略不计。而在北京及华北地区雾霾期间,一方面,由于颗粒物浓度大幅上升及静稳气象条件下相对湿度较高等原因,颗粒物结合水含量远高于经典情景,颗粒物结合水中的反应总量大大提升;另一方面,重度雾霾期间二氧化氮浓度为经典云水情景下的50倍以上,这直接改变了二氧化氮氧化路径的相对重要性。此外,北京及华北地区大量存在的氨、矿物粉尘等碱性物质使得当地颗粒物结合水的pH值远高于美国等地,呈现出特有的偏中性环境,而二氧化氮氧化机制的反应速率会随pH值上升而大幅提高。研究人员据此在论文中指出,优先降低氮氧化物的排放可能有助大幅降低中国雾霾中的硫酸盐污染水平。“该研究表明我国复合型污染的特殊性,”贺克斌院士对新华社记者说,“高二氧化硫主要来自燃煤电厂,高二氧化氮主要来自电厂和机动车等,而起到中和作用的碱性物质氨、矿物粉尘等则来自农业、工业污染、扬尘等其他来源。这些不同的污染源在我国同时以高强度排放,导致硫酸盐以特有的化学生成路径迅速生成,这也是重度雾霾期间颗粒物浓度迅速增长的主要原因之一。”伦敦酸雾通常被认为是由燃煤排放的烟尘以及二氧化硫等一次污染物所致。洛杉矶雾霾则是一种光化学污染,主要原因是机动车尾气在阳光作用下反应生成了二次污染物。而中国雾霾是一次与二次污染物混合造成。贺克斌说,这种复合型污染的特殊性更加表明了多污染物协同减排的重要性,尤其是现阶段应优先加大氮氧化物减排力度。“之前我们虽然知道需要减排,但是如果无法弄清重霾污染形成的关键化学机制,就无法进行有效的模型定量模拟分析,也就无法准确评估如何减排最有效、最科学。不科学减排可能导致严重后果,可能花了很多人力物力,但收效甚微。”

  【研究背景】CO₂是地球大气中主要的温室气体之一,其浓度已上升至约416 ppm,显著加剧了全球气候变化的风险。因此,CO₂的有效利用,尤其是通过催化还原反应转化为有用的化学品和燃料,成为当前研究的热点之一。传统的CO₂转化方法包括光催化、电催化和热催化等,其中热催化还原由于其较高的反应效率,已在工业应用中得到了广泛的研究和应用。与传统催化剂相比,负载型金属催化剂(如Ru/TiO₂)在CO₂加氢反应中表现出较高的活性和稳定性。通过控制金属颗粒的大小、负载方式以及载体的结构,研究人员已成功地制备出能够高效转化CO₂为甲烷(CH₄)、一氧化碳(CO)、甲醇(CH₃OH)等产物的催化剂。然而,尽管取得了大量进展,催化性能的选择性调控仍面临诸多挑战,尤其是在催化剂的活性位点和载体的结构优化方面。有鉴于此,中科院生态环境中心张长斌研究员以及加利福尼亚大学Fudong Liu团队携手在CO₂加氢反应中取得了新的进展。该团队发现,微量的SO₄²⁻残留在Ru/TiO₂催化剂上,能够显著改变CO₂加氢反应的选择性,将传统的甲烷化反应(生成CH₄)转变为逆水煤气反应(RWGS,生成CO)。研究表明,空气退火处理会导致硫酸根从TiO₂载体迁移到Ru/TiO₂界面,这一过程增强了氢从Ru颗粒向TiO₂载体的传递(氢溢流效应),从而抑制了CO中间体的活化,最终促进了CO的生成而抑制了CH₄的生成。本文通过对催化剂的详细表征和密度泛函理论(DFT)计算,研究人员进一步揭示了SO₄²⁻残留在Ru/TiO₂界面上的关键作用。这一发现突显了微量杂质在催化反应中的重要性,并为设计和开发更高效、更具选择性的异相催化剂提供了新的思路。该研究不仅为CO₂加氢反应的催化机制提供了新的理解,还为催化剂的优化设计提供了重要的理论依据,具有广泛的应用前景。【表征解读】本文通过多种先进的表征手段,深入揭示了残留硫酸盐物种在Ru/TiO₂催化剂中的作用,尤其是它们对CO₂加氢反应产物选择性的决定性影响。首先,利用X射线衍射(XRD)技术,本文确定了Ru/TiO₂催化剂的晶体结构,并发现不同硫酸盐含量的催化剂在结构上没有显著差异,这表明硫酸盐的影响主要表现在催化性能而非催化剂的晶体结构上。XRD分析结果进一步支持了TiO₂载体在反应过程中并未发生明显的晶相转变,硫酸盐的存在并未直接改变TiO₂的晶体结构,而是通过界面效应影响了催化剂的活性表现。为了进一步理解硫酸盐的具体作用机制,本文通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)以及元素映射,详细观察了硫酸盐在Ru/TiO₂催化剂表面的分布情况。通过HAADF-STEM成像,我们发现硫酸盐物种主要分布在Ru/TiO₂的界面处,且随着硫酸盐添加量的增加,这一现象变得更加显著。元素映射图像清晰显示,硫酸盐在Ru颗粒与TiO₂载体的接触区域富集,这为进一步揭示硫酸盐在反应中作为中介促进氢溢流效应提供了直接证据。此外,X射线光电子能谱(XPS)分析提供了催化剂表面化学状态的信息,进一步揭示了硫酸盐物种对催化剂表面电子结构的影响。XPS结果显示,含硫酸盐的Ru/TiO₂催化剂表面Ru的电子密度有所变化,表明硫酸盐可能与Ru位点之间发生了相互作用,改变了Ru的表面电子性质,这与氢溢流效应的增强相一致。通过对比不同硫酸盐含量的催化剂,XPS数据进一步证明了硫酸盐物种与TiO₂表面之间的相互作用是推动氢转移的关键因素。为了深入理解硫酸盐在Ru/TiO₂催化剂中如何影响反应过程,本文采用了H₂温度程序还原(H₂-TPR)技术,研究了不同硫酸盐含量下Ru颗粒的还原特性。H₂-TPR实验结果表明,含硫酸盐的Ru/TiO₂催化剂的还原峰值显著较低,且还原过程更加平缓,这表明硫酸盐的存在使得Ru颗粒的还原过程变得更加容易。这一现象进一步验证了硫酸盐通过与Ru位点的相互作用,降低了Ru颗粒的还原难度,促进了氢溢流效应的发生。CO脉冲化学吸附实验也进一步证实了硫酸盐对催化剂活性的影响。实验结果显示,含硫酸盐的Ru/TiO₂催化剂在CO脉冲吸附过程中表现出较低的CO吸附量,表明硫酸盐的存在削弱了CO中间体在Ru位点的吸附能力,从而降低了CO的进一步氢化为CH₄的可能性。这一发现与CO₂加氢反应中CO选择性高的实验结果一致,进一步证明了硫酸盐在调节催化剂产物选择性中的重要作用。分子动力学(DFT)计算进一步揭示了硫酸盐在Ru/TiO₂催化剂中的作用机制。计算结果表明,硫酸盐在Ru/TiO₂界面的存在显著增强了氢从Ru颗粒向TiO₂载体的转移,而这一过程是通过硫酸盐作为中介促进的。DFT计算还表明,硫酸盐物种通过改变Ru颗粒表面的电子密度,降低了CO中间体的吸附强度,进而抑制了CO向CH₄的进一步转化。这一计算结果与实验结果高度一致,为我们提供了对硫酸盐在催化反应中作用的理论支持。综合以上表征结果,本文深入分析了硫酸盐在Ru/TiO₂催化剂中的微观作用机制,揭示了硫酸盐物种通过调节氢溢流效应和改变CO中间体吸附特性,决定了CO₂加氢反应的产物选择性。这一发现为催化剂设计提供了新的思路,即在开发高效催化剂时,必须重视微量杂质如硫酸盐的作用,避免忽视其潜在的催化效应。通过系统的表征分析,本文成功揭示了硫酸盐在Ru/TiO₂催化剂中的关键作用,并推动了对催化剂微观机制的更深入理解,为未来更高效、更具选择性的异相催化剂的设计提供了理论基础。Ru/TiO₂催化剂的催化性能原文详情:Chen, M., Liu, L., Chen, X. et al. Sulfate residuals on Ru catalysts switch CO2 reduction from methanation to reverse water-gas shift reaction. Nat Commun 15, 9478 (2024).

  导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01 方法评估在0-20ppm范围内建立标准曲线次重复测试RSD同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。 图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果图4 催化剂状态图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献马跃飞 高镍多元前驱体的制备与研究 . 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。

  关于征求《土壤 可溶性硫酸盐的测定 重量法》(征求意见稿)等三项国家环境保护标准意见的函 各有关单位: 为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《土壤 可溶性硫酸盐的测定 重量法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2010年8月15日前反馈我部。 联系人:环境保护部科技标准司 李晓弢 通信地址:北京市西直门内南小街115号 邮政编码:100035 联系电话 传线.《土壤可溶性硫酸盐的测定重量法》(征求意见稿) 2.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)编制说明 3.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿) 4.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)编制说明 5.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿) 6.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)编制说明 二○一○年七月十六日

  硫酸盐还原菌(srb)是石油和天然气行业中一个颇受关注的领域,主要是因为硫酸盐还原菌在管道等缺氧环境中能够将硫酸盐还原成硫化氢并在含铁环境中产生不溶性硫化亚铁,严重腐蚀金属表面,导致油气产量与产品品质下降,并增加了管路与系统维护成本。 modern water quickchek srb 检测试剂盒是一种采用酶免疫方法进行硫酸盐还原菌(srb)快速检测的设备。该方法采用了高纯度的抗体来探测腺苷-5’-磷酰磺酸酯酶(aps),这种还原酶是所有srb菌株拥有的共同特征。与传统的细菌培养检测方法相比,quickchek srb检测试剂盒具有很多优势,比如快速,准确等。该设备可以检测固态,半固体样品中的全部的srb含量,包括了在一些标准介质中无法存活的srb。测试结果不会被现场检测过程中常见的化学品或盐类所干扰。近的实验室测试结果表明quickchek srb测试结果与qpcr方法的结果具有高度相关性。

  导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01方法评估在0-20ppm范围内建立标准曲线次重复测试RSD同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果 图4 催化剂状态 图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献马跃飞 高镍多元前驱体的制备与研究 . 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。

  根据不同标准方法测定硫酸盐灰分灰分测定”硫酸盐灰分测定是药品质量控制中评价药品成分纯度和质量的一项重要分析技术。硫酸盐灰分的测定包括加入硫酸,然后焚烧样品,去除所有的有机物,然后测定残留物。所得的残留物主要由无机盐组成,可以对其进行分析,得到有关杂质存在和样品质量的信息。硫酸盐灰分的测定是评价原料药质量的一个重要参数,关系到最终产品的有效性和安全性。药物中杂质的存在和无机阳离子的水平会影响最终产品的药效和纯度,在某些情况下,会对患者身体健康产生不利影响。因此,需要准确可靠的硫酸盐灰分测定方法,以保证药品的质量和安全。1介绍各种药典方法已被开发用于测定药用物质中的硫酸盐灰分,包括美国药典(USP)、欧洲药典(EP)和中国药典(CP)方法。这些方法已在各地的药品质量控制实验室得到验证和广泛应用。然而,由于其中一些测定的复杂性和成本控制等,需要建立一种更简单、更经济、更准确的硫酸盐灰分测定方法。本研究在 USP 药典方法的基础上,建立了一种简单、准确、安全、可靠的测定原料药中硫酸灰分的方法。该方法具有良好的准确性、安全性和优异的高温性能,同时也适用于阿司匹林等药用物质中硫酸灰分的测定。所得结果与预期结果吻合较好。该仪器可用于药品质量控制实验室的常规分析,为评价药品成分的纯度和质量提供了可靠的工具。2硫酸盐灰分测定中国药典中对该硫酸灰分测定的方法为 0841 炽灼残渣检查法。具体方法:取供试品 1.0~2.0g 或各品种项下规定的重量,置已炽灼至恒重的坩埚中,精密称定,缓缓炽灼至完全炭化,放冷;除另有规定外,加硫酸 0.5~1ml 使湿润,低温加热至硫酸蒸汽除尽后,在 700~800℃ 炽灼使完全灰化,移置干燥器内,放冷,精密称定后,再在 700~800℃ 炽灼至恒重,即得。如需将残渣留作重金属检查,则炽灼温度必须控制在 500~600℃。根据对比不同国家药典的方法研究,USP 和 EP 可以说完全一样,只是叫法不一样,与 CP 的区别为:USP、EP 对加样品之前的坩埚不需要恒重,CP 要求加样品之前坩埚恒重。USP、EP 对整个炽灼过程中要求不能产生火焰,CP 没要求。USP、EP 判断结果是从首次完全炽灼后开始,如不超限度,判定合格,不需要再恒重;如超限度,需要循环最后一步,若在恒重前不超限度,判定合格,若直至恒重仍不合格,判定不合格。温度要求不一样。湿法消解仪 B-440尾气吸收仪 K-415湿法灰化系统由湿法消解仪 B-440 和尾气吸收仪 K-415 组成(如上图1),可以根据药品质量控制中的不同具体方法的选择可能取决于分析的目的、每天的样品量以及遵守官方标准方法的需要,轻松有效地进行灰化实验。此外,它可用于不同药典的各种应用(温度高达600°C):2302 灰分测定法原子吸收光谱法或ICP进行元素分析前处理镉和铅分析的预处理Residue on ignition (USP 281)Heavy metal test method (USP 231, Method II)Loss on ignition test method (USP 733)▲ 图 2. 湿法灰化系统示意图,由湿法消解仪B-440(左)和尾气吸收仪K-415(右)组成。湿法消解仪 B-440 将样品加热到高达 600°C 的温度,尾气吸收仪提供多步骤进行吸收,以确保完全中和吸收灰化过程中产生的有害烟雾。提供以下三个步骤:预冷凝含水烟雾的冷凝阶段用碱性溶液中和酸雾的中和阶段活性炭对残留烟雾的吸附阶段湿法灰化系统通过两种仪器的完美同步工作,得到最准确的结果。在这项研究中,通过对一些样品测试,如乳糖,玉米淀粉以及阿司匹林等。通过应用这些方法,测定的硫酸盐灰分含量低至 0.02 - 0.04 wt% (如表1),很好的吻合于样品的线:测定不同样品的仪器参数及数据结果3结论在这项研究中,我们提出了一种有效的方法,用于测定药用物质中的硫酸盐灰分。该方法在药典方法的基础上取得了良好的结果,证明了其作为药物质量控制实验室常规分析的可靠方法的潜力。使用湿法灰化系统,提高分析速度,精度和安全性。同时开发可靠的方法对于维持药品生产的高质量标准和确保患者安全至关重要。

  在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。今天给大家分享一篇2019年发表在《Nature Methods》杂志上的文章。作者设计了一种生物发光的探针BiGluc,利用该探针即可在体内、体外实时、无创的长期监测葡萄糖的摄取。葡萄糖是大多数生物体能量的主要来源,其异常摄取与许多病理条件有关,如肿瘤、糖尿病、神經退行性疾病、非酒精性脂肪性肝炎等。到目前为止,基于18FDG的正电子发射断层成像(PET)仍然是测量葡萄糖摄取的金标准。还没有光学成像技术能够很好的检测该指标。文章中作者设计了一种可以可视化和定量葡萄糖吸收的光学探针。该探针是基于结合笼状萤光素技术与生物正交‘点击’反应,即可激活的笼状萤光素三芳基膦酯(CLP)与全氟苯基叠氮基修饰的葡萄糖(GAz4)分子之间产生的生物正交点击反应,该反应导致游离萤光素的释放,此时在萤光素酶的存在下,即可产生可量化的生物发光信号,其信号强度与葡萄糖的代谢水平相关。在活体成像中,首先是表达萤光素酶的动物注射CLP, 24小时后注射GAz4,注射后即可使用IVIS 小动物活体成像系统进行成像,如下图所示。图1. BiGluc.探针的设计策略点击查看视频:为了研究BiGluc探针在活体水平的应用,文中使用基因工程鼠FVB-luc+/+【该小鼠通过β-actin启动子广泛的表达萤光素酶】来进行评价。在三组FVB-luc+/+小鼠中,首先尾静脉注射CLP溶液,24h后分别灌胃GAz4(BiGluc组)、GAz4+d-葡萄糖(BiGluc+d-葡萄糖组)或PBS(背景组)。结果显示,d-葡萄糖(1:300 ratio with the GAz4 probe)的竞争能够对BiGluc信号进行抑制,使得信号值下降至背景值。从而成功证明BiGluc探针与天然底物存在竞争(下图a-c)。为了进一步研究BiGluc和d-葡萄糖的在体内的选择性,作者进行了胰岛素耐受性试验。高水平的胰岛素会导致GLUT4易位到细胞膜,随后组织对d-葡萄糖摄取的增加。因此实验中FVB-luc+/+小鼠静脉注射CLP,24h后注射GAz4 结合 PBS溶液(对照组)或者胰岛素,随后进行生物发光成像,结果显示胰岛素处理组小鼠的信号增加了三倍(下图d)。图2. 转基因小鼠(FVB-luc+/+)中d-葡萄糖摄取的成像和定量这些实验结果表明,BiGluc探针可以可靠地用于可视化研究活体水平d-葡萄糖的摄取,并且可以进行定量,从而也提示该探针可用于糖尿病等代谢疾病的研究。同样,该探针可用于肿瘤葡糖糖摄取的研究。葡萄糖转运蛋白,特别是GLUT1,在多种类型肿瘤发展中起着至关重要的作用。实验中使用裸鼠接种4T1-luc或4 T1-luc-GLUT1?/?细胞,肿瘤生长至体积65mm3,所有的动物注射等量的萤光素,以确保肿瘤的大小和萤光素酶的表达量相同。如前所示,进行BiGluc探针成像实验。实验结果表明,与对照组相比,4T1-luc-GLUT1?/?发光强度降低38%。同样文中还研究了BiGluc信号是否可以通过化学抑制GLUT1转运体来调节。众所周知,WZB-117是一种小分子的GLUT1可逆抑制剂,能够在不同的癌症中有效地阻止葡萄糖的摄取。结果显示WZB-117处理组,葡萄糖摄取信号减少50%(下图c,d)。同样文中比较了BiGluc 探针和18F-FDG-PET在肿瘤移植体中的应用效果。结果显示 4T1-luc-GLUT1?/-细胞对葡萄糖的摄取量降低,与BiGluc探针成像结果一致(下图e,f)。图3. 使用BiGluc和18F-FDG探针对肿瘤异种移植模型中d-葡萄糖的摄取进行成像和定量这些结果都证明了BiGluc探针在研究机体葡萄糖摄取中强大的功能。相信这项技术可以广泛应用于药物研发以及监测与葡萄糖摄取异常相关疾病的发生和进展,如癌症、糖尿病和肥胖等。此外,BiGluc技术扩大了生物发光成像技术可检测的生物分子的范围。在未来,利用新的红移萤光素-萤光素酶组合技术可以进一步提高BiGluc探针灵敏度,将进一步扩大其应用范围。文章来源关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问

  【山东云唐*新品推荐YT-FM1T】蜂蜜含量测定蔗糖葡萄糖麦芽糖果糖仪器@云唐蜂蜜检测仪上市→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。蜂蜜含量测定蔗糖葡萄糖麦芽糖果糖仪器蜂蜜含量测定蔗糖葡萄糖麦芽糖果糖仪器是专门用于测定蜂蜜中蔗糖、葡萄糖、麦芽糖、果糖等糖类含量的专业设备。主要功能:该仪器能够同时检测蜂蜜中的蔗糖、葡萄糖、麦芽糖、果糖等多种糖分含量,为蜂蜜的质量控制和真伪鉴别提供有力支持。通过精确测量这些糖分的含量,可以评估蜂蜜的纯度、品质和营养价值。产品特点:高精度与准确性:采用先进的分析技术和高精度传感器,确保测量结果的准确性和可靠性。多功能性:除了检测糖类含量外,部分仪器还可以分析其他成分如水分、羟甲基糠醛(HMF)、酶活性等,有助于全面评估蜂蜜的品质和纯度。快速与高效:相比传统实验室检测方法,现代蜂蜜含量测定仪器能够在更短的时间内完成检测,通常只需数分钟到数小时即可获得检测结果,大大提升检测效率。易于操作:仪器设计人性化,操作简单方便,易于上手。应用场景:在蜂蜜生产、加工、销售等各个环节,该仪器都发挥着重要作用,确保蜂蜜产品的质量和纯度。

  近日,市场监管总局标准技术司发布了《关于公开征求〈农林拖拉机和机械、草坪和园艺动力机械操作者操纵机构及其他显示装置用符号 第2部分:农用拖拉机和机械用符号〉等71项拟立项国家标准项目意见的通知》。在这71项拟立项国家标准中,涉及保健食品领域的有8项,涵盖了6种保健食品原料的标准,包括红曲、吡啶甲酸铬、蝙蝠蛾被毛孢菌粉、盐酸氨基葡萄糖、硫酸软骨素钠、蝙蝠蛾拟青霉菌粉,以及两项关于保健食品中氨基葡萄糖和硫酸软骨素含量的测定标准。序号标准名称主要起草单位范围和主要技术内容1保健食品原料 红曲中国食品发酵工业研究院有限公司 、国家市场监督管理总局食品审评中心 、国家食品安全风险评估中心 、中国生物发酵产业协会 、福建省微生物研究所 、浙江三禾生物工程股份有限公司 、武汉佳成生物制品有限公司 、广东天益生物科技有限公司 、中国科学院过程工程研究所 。本标准规定了红曲的术语和定义技术要求、试验方法、检验规则和标签、包装、运输、贮存要求。 本标准适用于发酵法生产制得的红曲。2保健食品原料 吡啶甲酸铬国家市场监督管理总局食品审评中心 、中国保健协会等 。本文件规定了保健食品原料吡啶甲酸铬的质量要求,包括术语和定义、技术要求、试验方法、检验规则、标志、标签、包装、运输、贮存和保质期。 本文件适用于保健食品原料吡啶甲酸铬的生产、检验和销售。3保健食品中氨基葡萄糖的测定四川省食品检验研究院 、中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、浙江省食品药品检验研究院等 。本文件规定了保健食品中氨基葡萄糖的高效液相色谱测定方法;本文件适用于保健食品中氨基葡萄糖的测定。试样用水超声提取,经邻苯二甲醛或异硫氰酸苯酯衍生后,用高效液相色谱测定,外标法定量。4保健食品原料 蝙蝠蛾被毛孢菌粉 中国食品发酵工业研究院有限公司 、国家市场监督管理总局食品审评中心 、国家食品安全风险评估中心 、中国营养保健食品协会 、中国食品科学技术学会 、中国科学院微生物研究所 、江苏神华药业有限公司 、青海珠峰冬虫夏草保健品有限公司 、浙江五养堂药业有限公司 、江西济民可信集团有限公司 。本标准规定了蝙蝠蛾被毛孢菌粉的术语和定义技术要求、试验方法、检验规则和标签、包装、运输、贮存要求。 本标准适用于发酵法生产制得的蝙蝠蛾被毛孢菌粉。5保健食品原料 盐酸氨基葡萄糖国家市场监督管理总局食品审评中心 、中国检验检疫科学研究院综合检测中心等 。本文件规定了保健食品原料盐酸氨基葡萄糖的质量要求,包括术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。 本文件适用于保健食品原料盐酸氨基葡萄糖的生产、检验和销售。6保健食品原料 硫酸软骨素钠国家市场监督管理总局食品审评中心 、中国标准化研究院等 。本文件规定了保健食品原料硫酸软骨素钠的质量要求,包括术语和定义、技术要求、试验方法、检验规则、标签和使用说明书以及包装、运输和贮存。 本文件适用于从牛、猪、鸡、鸭、羊和鲨鱼等动物软骨组织中提取的硫酸软骨素钠。7保健食品中硫酸软骨素的测定中国检验检疫科学研究院 、中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司等 。本文件描述了保健食品中硫酸软骨素的测定方法。 本文件适用于以硫酸软骨素作为主要原料的软胶囊、硬胶囊、片剂、凝胶糖果、液体及固体饮料等类型的保健食品中硫酸软骨素的测定。8保健食品原料 蝙蝠蛾拟青霉菌粉中国食品发酵工业研究院有限公司 、国家市场监督管理总局食品审评中心 、国家食品安全风险评估中心 、中国营养保健食品协会 、中国食品科学技术学会 、中国科学院微生物研究所 、中国生物发酵产业协会 、福建省微生物研究所 、浙江三禾生物工程股份有限公司 、武汉佳成生物制品有限公司 、广东天益生物科技有限公司 、中国科学院过程工程研究所 。本标准规定了保健食品原料蝙蝠蛾拟青霉菌菌粉的术语和定义技术要求、试验方法、检验规则和标签、包装、运输、贮存要求。 本标准适用于保健食品原料蝙蝠蛾拟青霉菌菌粉的生产、销售、运输。 保健食品原料 红曲红曲是以大米作为主要原料,由红曲霉菌Monascus sp.发酵制成的紫红色曲米,一千多年来被广泛应用于食品着色剂、调味品、酒类酿造及中医药等领域,是珍贵的药食两用原料,具有广泛的应用范围和极高的开发价值。红曲霉发酵可产生多种代谢产物,主要有红曲色素、胆固醇合成抑制剂、降血压物质、多种酶类、抑菌物质及其它多种生理活性物质。2024年,日本有多人被曝在服用小林制药生产的含红曲成分保健品后因肾脏疾病住院甚至死亡。据厚生劳动省统计数据,截至4月18日,服用该公司涉事保健品的消费者累计已有5人死亡、240人住院,另有1430余人前往医疗机构就诊。日本厚生劳动省上月说,小林制药生产的问题红曲原料中除先前发现的软毛青霉酸外,又检测出两种“意想不到的物质”。研究人员正在分析这两种物质的具体成分以及其为何出现在红曲原料中。 保健食品原料 吡啶甲酸铬吡啶甲酸铬作为一种有机三价铬物质,适量补充可以有助于降低血糖和血脂水平,缓解糖代谢和脂代谢紊乱的有关症状,具有抗炎、抗氧化潜能,已普遍应用于保健食品中,并已成为仅次于钙补充剂的第二大营养素补充物质。目前,我国尚无食品级吡啶甲酸铬原料相关国家标准、药典标准或行业标准,增加了原料和相关产品的监管难度,国内的生产企业也因无标准可依而难以取得保健食品用吡啶甲酸铬的食品生产许可证,一定程度限制了吡啶甲酸铬原料的发展,国内众多保健食品生产企业不得不从国外采购原料,使得原料供应风险、生产成本、生产周期大大增加,不利于追溯管理与产品质量控制。 保健食品原料 蝙蝠蛾被毛孢菌粉蝙蝠蛾被毛孢菌丝体是由天然冬虫夏草中分离出来的无型性真菌蝙蝠蛾被毛孢(Hirsutella sinensis)培育繁殖出来的菌丝体。其中含有的核苷类、虫草多糖、甾醇类化合物、超氧化物歧化酶等成分,具有提高机体的免疫力、益肾、养肺、保肝等作用。功效方面与天然冬虫夏草相当,但价位却相距甚远,随着人们对生活质量要求的提高,此类产品需求十分的旺盛。 保健食品原料 盐酸氨基葡萄糖氨基葡萄糖是一种广泛存在于人和动物软骨、肌腱和韧带中的天然氨基葡聚糖,是构成关节软骨基质和刺激合成聚氨基葡萄糖及透明质酸骨架的基本物质,适当的补充氨基葡萄糖可以刺激软骨细胞合成蛋白多糖,提高软骨细胞的修护能力,从而延缓骨关节炎的病理过程和疾病的进程。同时,氨基葡萄糖可通过降低炎症转录因子的浓度,抑制溶酶体酶、胶原酶和磷脂酶A2等水解酶的释放,减少关节软骨基质的水解破坏。 保健食品原料 硫酸软骨素钠硫酸软骨素(Chondroitin Sulfate,简写 CS/Chs)是天然复杂多糖,主要由N-乙酰半乳糖胺(2-乙酰胺-2-脱氧-β-D-吡喃半乳糖)和D-葡萄糖醛酸组成,根据硫酸基位置和数量的不同,可以将硫酸软骨素分为 A、B、C、D、E、K、L、M 等不同的类型,多以钠盐的形式存在。硫酸软骨素钠广泛存在于高等动物结缔组织中,其来源有陆地动物和海洋动物两大类,不同动物体内所存在的硫酸软骨素类型不同,猪、牛、羊的喉骨、鼻骨和关节骨中主要含有硫酸软骨素A,鲨鱼、乌贼等海洋动物的软骨中主要含有硫酸软骨素C。硫酸软骨素钠具有促进软骨再生,能有效预防关节炎,同时还具有降血脂、降血糖、抗肿瘤、抗炎、降血脂、抗凝血、抗病毒、促进伤口愈合、调节肠道微生态、神经保护等多种新颖药理学活性。 保健食品原料 蝙蝠蛾拟青霉菌粉蝙蝠蛾拟青霉菌是由从新鲜冬虫夏草中分离得到的蝙蝠蛾拟青霉(Paecilomyces hepiali Chen)Cs-4菌株,经人工深层发酵培养制成的菌粉,具有抗炎、降糖、免疫调节等作用。蝙蝠蛾拟青霉Cs-4菌株,已得到国家食药监管理局的批准在食品和保健食品中使用,国内有多家企业开发已上市的多种以蝙蝠蛾拟青霉菌粉为原料制成的保健产品。通过对发酵所得的菌丝体进行GC-MS分析、核磁等理化分析以及进行动物实验和分子系统学研究,分析得到蝙蝠蛾拟青霉中含有腺苷、甘露醇等活性物质成分,之后将蝙蝠蛾拟青霉菌粉制成的产品与天然冬虫夏草进行严格测试比较后,证实他们在功能和功效上并无明显区别,但蝙蝠蛾拟青霉菌粉的培植周期缩短,生产成本低。

  近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读

  使用步琦喷雾干燥仪B-290制备超长寿命钠铁硫酸盐正极材料喷干应用”1介绍随着经济的增长和对环境保护需求的增加,锂离子电池得到了巨大的发展和应用。然而锂电池中资源的均衡分配,以及一些贵金属元素(如钴和镍)的高成本和稀缺性,导致了成本上升和生产瓶颈。仅靠锂离子技术很难满足未来电力和储能市场的需求。钠离子电池为这些挑战提供了一个有前景的替代方案,它在从低速电动车到电网级储能系统的广泛应用中展现出巨大潜力。在各种正极材料中,聚阴离子正极因其高安全性、长寿命和低成本而闻名。其中,钠铁硫酸盐化合物(NaxFey(SO4)z,简称 NFS)因其超低成本和循环性能(主要在半电池中展示)而受到广泛关注。2014 年,Yamada 等人首次制备了Na2Fe2(SO4)3(NFS223)作为正极材料,实现了平均放电电压3.8V(相对于Na/Na+),这是迄今为止钠离子正极材料中 Fe3+/Fe2+ 氧化还原电位最高的。这一高输出电压归因于硫酸根的强诱导效应。其他研究也一致证明了这些材料的高电压、优异的循环稳定性(主要在实验室半电池中)和良好的倍率性能。空气稳定性是电池材料实际应用中的一个重要因素,因为它深刻影响材料的制备、储存和电池生产过程。许多钠离子正极材料,如层状氧化物,会在空气暴露时容易与 CO2、H2O、O2 等大气成分反应,导致结构降解和电化学性能下降。这些问题使得这些材料的储存和制造过程复杂化,从而增加了生产成本。近日,上海交通大学马紫峰、李林森团队提出了一种钠铁硫酸盐(Na2Fe(SO4)2,简称 NFS)正极材料的表面水合作用自限制和可逆性机制,该机制能够显著提高钠离子电池的循环寿命。团队通过喷雾干燥法制备了球形 NFS 颗粒,并对其进行了碳纳米管(CNTs)改性,以增强电子导电性。研究发现,尽管 NFS 正极材料在空气中暴露时会与水分反应生成水合物(Na2Fe(SO4)2·4H2O),但这种水合作用在NFS颗粒表面是空间受限的,不会扩散到颗粒内部。此外,当表面水合的 NFS 颗粒在典型的电极真空干燥过程中加热时,结构变化是可逆的,避免了额外的处理和额外成本。这一发现揭示了 NFS 正极材料在高性能和可持续钠离子电池应用中的潜力。2制备过程将分析纯的 Na2SO4 和 FeSO4·7H2O 加入去离子水中并搅拌至完全溶解,同时通入氮气;然后,加入一定量的碳纳米管浆料(CNTs)继续搅拌以获得均匀悬浮液;接着,利用喷雾干燥技术将悬浮液干燥,收集前驱体;最后,将前驱体置于石墨坩埚中,在 5℃/min 的升温速率下加热至 350℃,并保持 12 小时,自然冷却后得到最终的 Na2Fe(SO4)2/CNTs 产物。3工作要点本工作发现钠铁硫酸盐(Na2Fe(SO4)2,简称 NFS)正极材料在空气稳定性方面表现出色,即使在 20% 相对湿度的空气中存放 60 天或在半电池中循环 3500 次后,也能保持最小衰减和 91.9% 的容量保持率。此外,NFS 正极在实际相关的软包全电池中展现了卓越的循环性能,具有约 100 Wh kg-1 的比能量和超过 1000 次的循环寿命。尽管 NFS 正极与水分反应生成 Na2Fe(SO4)2·4H2O,但水合作用被限制在 NFS 颗粒表面,不会扩散到颗粒内部。而且,当表面水合的 NFS 颗粒在典型的电极真空干燥过程中加热时,结构变化是可逆的,避免了额外的处理和额外成本。这项工作揭示了 NFS 正极材料在高性能和可持续钠离子电池方面具有巨大潜力。▲ 图1. NFS 材料的制备过程示意图,通过喷雾干燥法进行。(b)和(c)是 NFS 颗粒的扫描电子显微镜(SEM)图像。(d)是原始 NFS 材料的 XRD 图谱和相应的Rietveld精修结果。(e)显示 NFS 的晶格条纹的高分辨率透射电子显微镜(HR-TEM)图像。(f)是选区电子衍射(SAED)图谱。(g)是 NFS 材料的 TEM-EDS 元素图。▲ 图2. NFS 材料在空气暴露前后的电化学性能。(a)是 NFS-3C 和 NFS 正极在 1C 倍率下的电压曲线% 相对湿度的空气暴露 60 天后进行的。(b)和(c) NFS-3C 正极在 5C 和 10C 倍率下的空气储存后的循环性能。(d)是 NFS 正极在 1C 倍率下空气储存后的循环性能。所有电化学测试均在半电池中使用jin shu 钠作为对电极,在 2.0 至 4.5V 的电压范围内进行。▲ 图3. 空气暴露后形态和结构变化。(a)至(c)分别是原始状态、在 20% 相对湿度下储存 60 天和在 60% 相对湿度下储存 60 天的 NFS-3C 颗粒的 SEM 图像。(d)和(f)分别是 NFS 和 NFS-3C 样品在储存前后的 XRD 图谱。(e)和(g)分别是(d)和(f)中 19° 至 20° 和 26.5° 至 27.5° 的 2θ 范围内 XRD 图谱的放大视图。19.6° 和 27.2° 处的衍射峰可能表明形成了Na2Fe(SO4)2·4H2O。▲ 图4. NFS 材料在空气暴露后的额外表征。(a)是从原始状态、在 20% 相对湿度下储存 60 天和在 60% 相对湿度下储存 60 天的样品中收集的宽扫描 XPS 图谱。(b)是窄扫描 O-1s 图谱。约 532 eV 处的峰对应于晶体中的羟基。(c)是 NFS 和 NFS-3C 样品的 FTIR 图谱。▲ 图5. CNT 改性对 Na2Fe(SO4)2 基粉末在空气暴露后结构的影响。(a)是Na2Fe(SO4)2、Na2Fe(SO4)2-1C 和 Na2Fe(SO4)2-3C 在 60% 相对湿度下储存 60 天后的 XRD 图谱放大视图。(b)是在 60% 相对湿度下空气暴露后Na2Fe(SO4)2 基粉末的热重分析(TGA),在 20 至 350℃ 的氮气氛围下进行。(c)是三个样品的 ATR-FTIR 图谱。▲ 图6. 在 60% 相对湿度下空气暴露 60 天后 Na2Fe(SO4)2 的再生。(a)是 Na2Fe(SO4)2-60% RH-60days 粉末在真空干燥前后的 XRD 图谱。(b)是 Na2Fe(SO4)2-60% RH-60days 粉末与 Na2Fe(SO4)2 和 Na2Fe(SO4)2-3C(在 60% 相对湿度下空气暴露 60 天)电极在真空干燥后的 XRD 图谱对比。(c)和(d)是在真空干燥过程中表面形貌和结构的演变。▲ 图7. NFS 正极材料的“动态空气稳定性机制”。在低相对湿度下,表面形貌和结构的演变遵循 A ↔ B 的顺序。在高相对湿度下,演变遵循 A → B → C ↔ D 的顺序。▲ 图8. NFS-HC 软包电池的电化学性能。(a)是钠离子全电池的示意图。(b)是 NFS-HC 软包电池的照片,总重量约为 22.9 克。(c)是在 1.5-4.2V 范围内的倍率性能。(d)、(e)和(f)是在不同电压范围和倍率下测试的 NFS-HC 软包电池的电压曲线。(g)、(h)和(i)是相应的放电容量与循环次数的对比图。4实验结论研究人员使用通过喷雾干燥合成制备的球形 NFS 颗粒作为模型系统,研究了 NFS 正极材料的空气稳定性机制。通过将 NFS 正极材料暴露在不同相对湿度水平下,研究人员系统地评估了形态、结构和化学变化及其与电化学性能的相关性。结果表明,NFS 表现出动态空气稳定性。在低湿度条件下,它形成了微量的 NFS 水合物,在长时间内呈现出吸水和风化之间的平衡。在高湿度条件下,NFS 水合物在颗粒表面形成,防止了进一步的水合。水合作用对 NFS 正极的电化学性能影响很小,因为晶格水在电极干燥过程中很容易被去除,恢复NFS材料到其原始状态。引入 CNTs 有助于减少水分吸收,进一步增强其空气稳定性。这项研究代表了对 NFS 正极材料空气稳定性机制的首次系统研究。提出的新机制为理解和改进其他 NFS 正极材料(具有不同 Na/Fe 比的 NFS)的空气稳定性提供了宝贵的见解。最后,NFS 正极材料在实际软包电池中具有卓越循环性能(1000 个循环后容量保持率为 81.9%,在电池级别上比能量约为 100 Wh kg-1)。这项工作 NFS 正极材料在低成本和高性能钠离子电池方面的巨大潜力。B-290S-30040 多年来,步琦一直在为实验室喷雾干燥和微胶囊化开发解决方案,如今完成了 B-290 到 S-300 的全面升级。我们一直致力于了解并满足您对实验室颗粒形成技术的个性需求。我们为各个行业提供量身定制和可信赖的解决方案以及高度专业的应用支持。 5文献来源Zheng, Zhilin, et al. Self-Limited and Reversible Surface Hydration of Na2Fe (SO4) 2 Cathodes for Long-Cycle-Life Na-ion Batteries. Energy Storage Materials (2024): 103882.

  国家标准计划《油料种籽中果糖、葡萄糖、蔗糖、水苏糖和棉子糖含量的测定》由 326(农业农村部)归口 ,主管部门为农业农村部。主要起草单位 中国农业科学院油料作物研究所 、中国农业科学院农产品加工研究所 、中国农业科学院作物科学研究所 。国家标准《油料种籽中果糖、葡萄糖、蔗糖、水苏糖和棉子糖含量的测定》征求意见稿.pdf国家标准《油料种籽中果糖、葡萄糖、蔗糖、水苏糖和棉子糖含量的测定》编制说明.pdf

  各相关单位:根据国家标准化管理委员会、民政部《团体标准管理规定》(国标委〔2019〕1号)的文件要求,按照《内蒙古石油和化学工业协会团体标准管理办法(试行)》的有关规定,由内蒙古大学牵头编制的《水煤浆添加剂 水溶性硫酸盐含量的快速测定 离子色谱法》(T/IMPCA 0009-2023)《团体标准已通过专家审定委员会审定,现予批准发布,并于 2024年1月1日起实施。 特此公告 内蒙古石油和化学工业协会2023年12月20日关于发布《水煤浆添加剂 水溶性硫酸盐含量的快速测定离子色谱法》团体标准的公告.pdf

  2023年4月共有68项食品及相关标准正式实施,其中,代替标准6项,新增标准62项,新增标准占标准总数的91.18%。4月起实施的标准中,国家标准2项(《GB 5749-2022 生活饮用水卫生标准》和《GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法》),地方标准9项,行业标准34项,团体标准23项。这些标准涉及原料标准、农产品加工标准、规范规程标准、检测方法标准等。 该类标准中,涉及到的仪器类别有液相色谱仪、气相色谱仪、液相色谱质谱联用仪、气相色谱质谱联用仪、电感耦合等离子体质谱仪、高效液相色谱-原子荧光光谱仪、核磁共振波谱仪等。值得注意的是,《GB 5749-2022 生活饮用水卫生标准》已于4月1日起正式实施;《GB/T 5750-2023生活饮用水标准检验方法系列标准》也将于将于10月1日正式实施。2023年4月起实施的食品及相关标准信息序号标准编号及名称实施日期代替标准1GB 5749-2022 生活饮用水卫生标准2023-04-01GB 5749-20062GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法2023-04-013HG/T 6074-2022 水处理剂 一元二氧化氯发生剂2023-04-014HG/T 6071-2022 水处理剂用单过硫酸氢钾复合盐2023-04-015HG/T 6073-2022 水处理剂 聚硫氯化铝2023-04-016HG/T 4672-2022 水处理剂 聚氯化铁2023-04-01HG/T 4672-20147HG/T 4538-2022 水处理剂 氯化亚铁2023-04-01HG/T 4538-20138JB/T 14690-2022 豆油皮加工生产线 冷藏肉腐败变质实时监测装置2023-04-0110JB/T 14619-2022 生鲜肉营养成分无损检测装置2023-04-0111JB/T 14620-2022 水果品质便携式检测装置2023-04-0112JB/T 14567-2022 直冷式块冰制冰机2023-04-0113QB/T 5633.3-2022 氨基酸、氨基酸盐及其类似物 第 3 部分:L-苏氨酸2023-04-0114QB/T 5633.4-2022 氨基酸、氨基酸盐及其类似物 第 4 部分:L-色氨酸2023-04-0115QB/T 5633.5-2022 氨基酸、氨基酸盐及其类似物 第 5 部分:L-精氨酸及 L-盐酸精氨酸2023-04-0116QB/T 5633.6-2022 氨基酸、氨基酸盐及其类似物 第 6 部分:三甲基甘氨酸及其盐酸盐2023-04-0117QB/T 5633.7-2022 氨基酸、氨基酸盐及其类似物 第 7 部分:γ-氨基丁酸2023-04-01QB/T QB/T 5756-2022 酸面团2023-04-0119QB/T 5758-2022 罐头食品金属容器用易撕盖2023-04-0120QB/T 5759-2022 番茄酱罐头中番茄红素含量测定 高效液相色谱法2023-04-0121QB/T 5761-2022 食品中水苏糖的测定 核磁共振波谱法2023-04-0122QB/T 5776-2022 食用盐中抗结剂柠檬酸铁铵的测定2023-04-0123QB/T 5679-2022 饮用水处理装置能效限定值及能效等级2023-04-0124QB/T 5705-2022 乳制品行业绿色工厂评价要求2023-04-0125QB/T 5791-2022 食用植物业绿色工厂评价要求2023-04-0126QB/T 5743-2022 酵母行业绿色工厂评价要求2023-04-0127QB/T 5744-2022 氨基酸行业绿色工厂评价要求2023-04-0128QB/T 5745-2022 淀粉糖行业绿色工厂评价要求2023-04-0129QB/T 5746-2022 山梨糖醇行业绿色工厂评价要求2023-04-0130QB/T 5747-2022 绿色设计产品评价技术规范 淀粉糖2023-04-0131QB/T 5748-2022 绿色设计产品评价技术规范 有机酸2023-04-0132QB/T 5749-2022 绿色设计产品评价技术规范 氨基酸2023-04-0133QB/T 5750-2022 绿色设计产品评价技术规范 酵母制品2023-04-0134QB/T 5751-2022 绿色设计产品评价技术规范 山梨糖醇2023-04-0135QB/T 5752-2022 绿色设计产品评价技术规范 果蔬罐头2023-04-0136QB/T 5753-2022 绿色设计产品评价技术规范 水产罐头2023-04-0137DB61/T 1653-2023 柿饼加工技术规程2023-04-1538DB44/T 2416-2023 火龙果冷链技术要求与操作规范2023-04-2839DB44/T 2415-2023 冷藏运输节能操作规范2023-04-2840DB51/T 3020-2023 蔬菜采后处理与产地贮藏技术规程2023-04-0841DB14/T 2713-2023 小米仓储运输技术规范2023-04-1842DB14/T 2712-2023 小杂粮加工技术规范 小米2023-04-1843DB11/T 1764.21-2022 用水定额 第21部分:屠宰及肉制品加工2023-04-0144DB11/T 1764.12-2022 用水定额 第12部分:饮料2023-04-01DB11/T DB11/T 1047-2022 果品等级 鲜食枣2023-04-01DB11/T T/YNBX 084-2023 铁皮石斛真伪鉴别 高效液相色谱指纹图谱法2023-04-0147T/AHFIA 089-2023 预制菜 速食米线-04-0149T/AHFIA 088-2023 预制菜 炒叶芥菜2023-04-0150T/AHFIA 087-2023 预制菜药膳芍花鸡2023-04-0151T/AHFIA 086-2023 预制菜 药膳麻椒鸡2023-04-0152T/AHFIA 085-2023 预制菜 药膳参杞牛肉2023-04-0153T/AHFIA 084-2023 预制菜 徽州干锅炖2023-04-0154T/AHFIA 083-2023 预制菜 徽州葛粉圆子2023-04-0155T/AHFIA 081-2023 预制菜 徽州刀板香2023-04-0156T/AHFIA 080-2023 预制菜 徽州臭鳜鱼2023-04-0157T/NXFSA 059-2023 锁鲜枸杞2023-04-0158T/FQIA 008-2022 产品质量鉴定程序规范2023-04-0159T/DZJN 129-2022 净水器用即热水龙头2023-04-0160T/FJHX 0004-2023 灵芝提取物中性三萜及麦角甾醇的测定 高效液相色谱法2023-04-0161T/FJHX 0003-2023 灵芝及其相关产品中β-葡聚糖的测定2023-04-0162T/HATSI 0022-2023 绿色设计产品评价技术规范 次氯酸氧化高电位消毒液2023-04-0163T/ZHCA 106-2023 人参提取物 稀有人参皂苷Rh22023-04-2164T/CNSS 016-2022 限能量膳食营养干预规范2023-04-0165T/CBFIA 07004-2022 清洁生产标准 氨基葡萄糖工业(发酵法)2023-04-0166T/CBFIA 07003-2022 氨基葡萄糖盐(发酵法)2023-04-0167T/CBFIA 07002-2022 N-乙酰氨基葡萄糖(发酵法)2023-04-0168T/CBFIA 13001-2022 温室气体排放核算与报告要求 生物发酵生产企业2023-04-01相关标准请到仪器信息网资料库查询:

  酒醅中可溶性淀粉转化葡萄糖有多少?酒曲生产需要一定的发酵周期,发酵过程不便调控,因此酒曲的化学成分分析对于制曲生产起着相当重要的作用。衡量大曲质量的优劣主要是根据大曲的水分、酸度、淀粉、发酵力、酯化力、糖化力等理化指标的大小,再辅以感官来进行综合评判。其中大曲糖化力是一个重要指标,是表征大曲将酒醅中可溶性淀粉转化为葡萄糖的能力。检测大曲糖化力的传统方法为斐林试剂法,存在耗时长、样品前处理过程繁琐等不足,因此建立一种快速、高效的大曲糖化力检测方法具有重要意义。本实验采用步琦的近红外光谱仪 NIRMaster 对大曲糖化力的快速检测。近红外光谱技术结合偏最小二乘法检测大曲糖化力 1仪器设备瑞士 Buchi 公司的 NIRMaster 傅里叶变换近红外光谱仪。光谱谱区范围为 4000~10000 cm-1,光谱分辨率为 8 cm-1,扫描次数为 48 次,测量序列个数为 3。 2样品酒厂酿酒周期的现用大曲 200 个 3实验方法3.1大曲糖化力化学方法测定大曲糖化力的化学测定法采用斐林试剂法。大曲中的糖化酶能将淀粉水解为还原糖,还原糖可以将斐林试剂中的二价铜离子还原为一价铜离子,反应终点由次甲基蓝指示。根据还原一定量的斐林试剂所需的还原糖量,可计算大曲样品的糖化酶活力,即 1g 大曲在 35 ℃、pH4.6 条件下,反应 1h,将可溶性淀粉分解为葡萄糖的能力。每个样品的检测均取 2 个平行样。3.2大曲样品的近红外光谱测量方法将大曲样品平铺于培氏培养皿样品杯底部,样品量约占样品杯 2/3,并用样品勺压紧,避免出现缝隙,然后将样品杯放置于测量池上进行测量。 4结果实验数据处理方法采集的光谱数据用 NIRCal 化学计量学分析软件处理和计算。▲ 大曲糖化力化学值与预测值的散点图上图可直观的看出模型的光谱预测值与原始值的相关性较好。其中,建模集的相关系数为 r 为 0.9613,验证集的相关系数 r 为0.9528;建模集标准偏差 SEC 与验证集标准偏差 SEP 的比值为 29.6099/29.7088=0.9967,模型稳定性较好,具有很好的预测能力。▲ 未知样品含量预测值与化学值的比较模型的验证结果可以看出,大曲糖化力近红外模型预测值的平均相对误差为 5.27 %,说明该近红外模型有较好的预测能力。为考察两种方法检测结果之间的差异性,采用 SPSS 软件对 50 组大曲样品进行差异显著性分析。结果见下表。从分析结果可以看出,在 0.05 水平上,两种方法差值的显著性结果为 0.830,大于 0.05,说明两种方法的检测结果的差异性并不显著,均可以反映大曲糖化酶活力大小,该模型可以用于大曲糖化力的预测。 5讨论本试验采用近红外光谱技术结合偏最小二乘法建立了预测大曲糖化力的定量模型。通过对模型的预测结果与传统方法检测结果的对比分析可以看出,该模型的准确度可以满足实际生产中大曲糖化力的预测。近红外光谱分析具有以下特点:操作简单分析速度较快,适合大批量重复测试测试过程中无需使用化学试剂、无污染样品可以重复使用可用于生产线参考文献王军凯,王卫东,蒋明,韩瑶,等. 近红外光谱技术结合偏最小二乘法检测大曲糖化力.酿酒,2018(3):116-118.

  对于CHO细胞表达抗体蛋白,通常认为目前的细胞系已经足够稳健,用户往往只需要选择合适的培养基来提高表达量就可以了;适度保持营养不富裕/不贫瘠是否能够帮助提高表达结果之前并没有太多研究。为此908devices公司设计了以控制葡萄糖浓度稳定在2g/L与经典的Fed-batch之间的表达结果比较。实验条件反应器:Distek BIOne 1250 3L细胞系:NIST-CHO mAb接种密度:0.5x106 cells/ml基础培养基:Ex-Cell Advanced CHO Fed-batch Medium (SAFC)补料培养基:Ex-Cell Advanced CHO Feed 1 (SAFC) w/o glucose fed at 5% EOD补料策略对比:l 自动反馈控制葡萄糖浓度在2g/Ll 葡萄糖浓度图3:铵离子浓度图4:活细胞密度图5:滴度图6:电荷异构体实验结论1,可以发现通过自动控制葡萄糖浓度稳定在2g/L,代谢副产物乳酸和铵的浓度均下降约50%,而抗体蛋白滴度和电荷异构体主峰均上升约10%;2,采用de Novo模型的即插即用在线拉曼Maverick,在无需提前建模或模型优化的情况下,可以实现与离线生化分析仪葡萄糖和乳酸参数值差异不超过+/-0.5g/L,大大节约了反馈控制场景搭建的(建模)时间成本;

  使用步琦微胶囊造粒仪制备硫酸盐纤维素微胶囊体包埋应用”1简介硫酸纤维素是一种生物相容性酯类物质,其微胶囊的制备是通过将聚合物溶液滴入含有合成聚阳离子型聚二烯丙基二甲基氯化铵(合成聚阳离子型聚DADMAC)的固定液中获得的。两种带相反电荷的聚合物在界面处发生快速静电相互作用,最终通过一步法形成机械稳定性强的水凝胶膜。由于磺酸基团间的强相互作用,这些微胶囊具有优异的机械性能,且不会引发免疫反应。此外,该膜结构均一、孔径分布窄,且孔径大小可预先设定。该技术主要用于封装动物细胞和干细胞,应用于医疗和生物技术领域,并已进入临床试验阶段,用于人体内细胞移植以治疗多种疾病。它也可用于封装活性药物成分(API)。研究目标:旨在利用一步法工艺生产纤维素硫酸钠-聚二甲基二烯丙基氯化铵(cellulose sulphate-polyDADMAC)微胶囊,以区别于其他需要多步操作的细胞封装工艺(如海藻酸盐-聚-L-赖氨酸工艺)2仪器和实验材料仪器:微胶囊造粒仪 Encapsulator B-390/B-395 Pro配置:单流体喷嘴系统— 300 μm 单喷嘴进样方式:注射泵/气压系统均质搅拌机聚合物:2% (w/v)硫酸纤维素(Biorefinary,德国)固定液:4% PolyDADMAC (分子量 35 kDa) (Biorefinary,德国)去离子水▲ 图1:准备聚合物3实验流程和参数从微胶囊造粒仪上拆除预过滤器。将 2g 纤维素硫酸钠溶于 100mL 水中。使用搅拌器将其完全溶解(如图1)。静置溶液直至澄清且内部气泡完全释放。气泡可以通过置于超声波浴中或抽线g 聚 DADMAC(分子量35 kDa)加入 200mL 水中,搅拌至完全溶解。要包埋的材料需在纤维素硫酸钠混合后加入溶液中。在胶囊生产过程中,这些材料被包裹在纤维素硫酸钠内芯中,而内芯则被聚 DADMAC 膜完全包裹。取用 20mL 纤维素硫酸钠溶液。待形成稳定的连串液滴后开始滴入固化液(聚DADMAC)进行生产(硬化),使用静电荷分散液滴并防止碰撞。当纤维素硫酸钠液滴落在固化液中后,让其硬化至少 30 分钟(硬化计时起点 T=0:当最后一滴液滴落入固化液的时刻)。用大量的水清洗胶囊,以去除颗粒周围可能存在的任何未反应的聚 DADMAC。实验参数流速8mL/min频率400 – 600Hz压力0.5bar振幅5电荷1000V4实验结果▲ 图2:将纤维素硫酸钠液滴滴入聚DADMAC溶液中制备的硫酸纤维素聚DADMAC半水液芯微胶囊。样品量20ml产率99%形态球形尺寸745μm标准偏差±2.3%5实验结论步琦微胶囊造粒仪 B-390 和 B-395 Pro 能够在单步工艺中生产球形硫酸纤维素-聚 DADMAC 微胶囊,所生产的颗粒具有极窄的尺寸分布。这些胶囊也可以使用 B-395 Pro 的反应容器在无菌条件下生产,用于生物医学应用的动物和干细胞的包埋。许多研究表明,与藻酸盐-聚L -赖氨酸胶囊系统相比,这些类型的胶囊系统功能更好,因为它们不会引发免疫反应,并且形成更稳定的结构。微胶囊造粒仪可以使用不同尺寸的喷嘴,硫酸纤维素胶囊尺寸可选择在 400 - 2500 μm 范围内,胶囊尺寸也可以通过使用不同分子量的聚 DADMAC 来改变。6参考文献Dautzenberg, H. et al. (1999). Development of cellulose sulphate-based polyelectrolyte complex microcapsules for medical applications, P. 46-63. In D. Hunkeler, et al., (Ed). Bioartifical Organs II: Technology, Medicine and Materials. New York Acad Sciences, New York (1999).

  葡萄糖塑料输液瓶密封性测试方法---高压放电法密封性测试仪在探讨葡萄糖塑料输液瓶密封性检漏的方法时,我们不得不提及国家药品监督管理局药品审评中心(CDE)及国家药典委发布的相关技术指导原则。CDE在2020年发布的《化学药品注射剂仿制药质量和疗效一致性评价技术要求》中,强调了对大容量塑料输液瓶等高风险产品进行密封性检查的重要性,并建议在工艺验证和商业化生产中增加取样数量和频次,甚至提出在条件允许的情况下进行100%密封性检查。随后,2024年6月国家药典委发布的“9628 无菌药品包装系统密封性指导原则”(第二次)进一步强调了药品包装密封性检测的必要性和重要性。那么对于9628上提到的众多检测密封性的方法来说,塑料输液瓶密封性检测用什么方法检漏仪?面对9628指导原则中提到的多种密封性检测方法,选择一种既高效又准确的检漏方法成为制药企业的关注焦点。在众多检测方法中,高压放电法因其测试效率、测试成本、检测灵敏度及无损检测的特性而备受青睐。特别是济南三泉中石实验仪器有限公司生产的高压放电法密封性测试仪Leak-HV,以其高精度和广泛适用性,成为制药企业和第三方检测机构的首选。塑料输液瓶产品的制作过程中需要将瓶与接头热封方式进行密封。这种方式可以有效防止漏液和微生物侵入,但仍可能出现气漏和渗透。曾几何时,很多制药厂家采用传统的用手挤压塑料输液瓶的方式检测泄漏,既不科学也无法定量测量。只能算作粗略的检测大漏的存在,无法避免微生物的侵入。而9628标准上对于高压放电法的精度等级定义为1μm-5μm。在实际应用中甚至三泉中石的Leak-HV高压放电法密封性测试仪可以测试到1μm以下的泄漏。对于一些高粘度或者混悬液注射剂来说,高压放电法密封性检漏的优势更为明显,不管内容物是否有一定的粘度,只要内容物导电率要达到一定的级别就可以轻松测试。而对于真空衰减法、质量提取法等方法来说,液体带有一定粘度很容易堵孔造成假阴性的结果。就目前的密封性检测技术来说,不管塑料输液瓶中盛放的液体是低导电率的葡萄糖还是高导电率的氯化钠溶液,Leak-HV高压放电法密封性测试仪都可以轻松检测。Leak-HV高压放电法密封性测试仪采用高压放电法测试原理,通过电极探头扫描不导电的密封容器,利用电阻差异和电流改变来检测容器是否存在泄漏。该方法不仅能够检测到微型小孔的泄漏,还能够识别大致的缺陷位置,测试过程便捷快速,可重复,且人为因素小。更重要的是,Leak-HV密封性测试仪适用于检测不可燃液体包装,如输液软袋、BFS、玻璃管制注射剂瓶、安瓿瓶、卡式瓶以及塑料输液瓶等产品,测试效率极高,可在几秒钟内完成样品的扫描测试。此外,高压放电法还具有测试结果非主观性判断、无需人工参与、保证数据准确性与客观性的优点。电动毛刷、滚筒电极的设计,使得一键启动即可自动检测,既节省了人力,又提高了检测效率。无论是检测微小漏孔还是鉴别大漏孔样品,Leak-HV高压放电法密封性测试仪都能够给出合格与不合格的判断。得注意的是,虽然高压放电法检漏仪造价相对较高,但其有效、直观、高效的检漏特性,使得其在制药行业中的应用价值不可忽视。更重要的是,样品经过Leak-HV高压放电法密封性测试仪检验后并不会受到污染,可正常使用,这在一定程度上降低了企业的生产成本和浪费。综上所述,对于葡萄糖塑料输液瓶等高风险产品的密封性检测,高压放电法密封性测试仪Leak-HV无疑是一种理想的选择。济南三泉中石实验仪器有限公司作为国内较早从事大塑料输液瓶瓶密封完整性检测技术的高新技术企业,不仅紧跟国家标准的要求,还积极参与“9628 无菌药品包装系统密封性指导原则”的标准制定工作,为标准的制定提供了数据和理论的支持。

  国家标准计划《葡萄糖氧化酶活性检测方法》由 SWG11(全国工具酶标准化工作组)归口 ,主管部门为国家标准化管理委员会。 拟实施日期:发布即实施。主要起草单位 福建南生科技有限公司 、夏禾(杭州)生物技术有限公司 、夏禾(深圳)生物技术有限公司 、宁夏夏盛实业集团有限公司 、厦门银祥集团有限公司 、深圳市新产业生物医学工程股份有限公司 、武汉新华扬生物股份有限公司 、廊坊诺道中科医学检验实验室有限公司 、天津博菲德科技有限公司 、广州市进德生物科技有限公司 、山西大禹生物工程股份有限公司 、河北省微生物研究所有限公司 、武汉瀚海新酶生物科技有限公司 、深圳市海拓华擎生物科技有限公司 。主要起草人 黄发灿 、郑登忠 、郑恬烨 、沈涛 、张志刚 。附件:国家标准《葡萄糖氧化酶活性检测方法》征求意见稿.pdf国家标准《葡萄糖氧化酶活性检测方法》编制说明.pdf

  各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对《人唾液中葡萄糖浓度的测定 离子色谱法》》、《洁净室服装及织物空气粒子过滤效率检测方法》2项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!同时欢迎与本标准有关的高校、科研机构、技术机构及相关企业单位或个人加入本标准的起草制定工作,有意参与本团体标准起草制定工作的请与学会联系。 联系人及电话:胡学刚 电 子 邮 箱:苏州市计量测试学会2023年04月17日关于《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准的立项通知.PDF关于《洁净室服装及织物空气粒子过滤效率检测方法》团体标准的立项通知.PDF

  根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(antis M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准 食品加工用菌种制剂》(GB 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium glutamicum RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5 mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准 食品添加剂 聚甘油蓖麻醇酸酯(PGPR)》(GB 1886.95)。 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf

  上海远慕生物科技有限公司为了回馈广大科研工作者特此做出培养基促销优惠活动啦,培养基均现货促销!价格绝对出乎你的意外,望有需要的老师赶快联系我们吧! 培养基是远慕公司自主研发的项目之一,产品质量有保证!说明书都会随货发给您!我们我是符合国家标准的,我们也可以按照客户提供的要求给您配制,我们承诺产品有任何质量问题都是免费退换的! 远慕生物严格遵守“质量优先、客户优先、技术优先、服务优先”“四项优先”原则;产品已被广泛应用于化学、化工、生命科学的基础研究和开发应用、制药、疾病诊断与控制、人口与健康、生物技术等诸多领域,并销往全国各地,公司客户遍布国内各大学、研究所、卫生防疫、制药公司、生物公司等单位,得到广大客户的一致好评。我们的宗旨是“为客户提供最优质的产品和服务”。 远慕欢迎您!培养基促销其他产品:结晶紫中性红胆盐葡萄糖琼脂(VRBGA) 250g/瓶 胰蛋白胨大豆琼脂(TSA) 250g/瓶 胰蛋白胨大豆琼脂 90mm×10个/包 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阪崎肠杆菌显色培养基(DFI琼脂) 1000ml/瓶 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 (KCN)培养基 1ml×10支/盒 (KCN)对照培养基 1ml×10支/盒 D-蔗糖发酵管 1ml×10支/盒 D-山梨醇发酵管 1ml×10支/盒 阿拉伯糖发酵管 1ml×10支/盒 卫矛醇半固体琼脂 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 产品名称 规格 采样袋/均质袋 100个/袋 SCDLP液体培养基基础 250g/瓶 SCDLP增菌肉汤 10ml×20支/箱 磷酸盐缓冲液(pH7.2) 250g/瓶 磷酸盐缓冲液(pH7.2) 225ml×20瓶/箱 磷酸盐缓冲液(pH7.2) 9ml×20支/箱 生理盐水 225ml×20瓶/箱 生理盐水 9ml×20支/箱 假单胞菌CFC选择性培养基基础 250g/瓶 假单胞菌CFC选择性培养基基础添加剂 1ml×10支/盒 假单胞菌琼脂基础培养基基础/CN琼脂基础 250g/瓶 萘啶酮酸 1.5mg×10支/盒 甘油 1ml×10支/盒 营养琼脂斜面(限供汽运) 10ml×20支/箱 营养琼脂(NA) 250g/瓶 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 革兰氏染色液 10ml×4支/盒 乙酰胺培养基 1ml×10支/盒 葡萄糖酸钾培养基 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 液体石蜡 2ml×10支/盒 硝酸盐蛋白胨水培养基 250g/瓶 明胶培养基(营养明胶培养基) 250g/瓶 山梨醇麦康凯(SMAC)琼脂 250g/瓶 亚碲酸钾溶液 0.25mg×10支/盒 头孢克肟溶液 0.005mg×10支/盒 改良山梨醇麦康凯(CT-SMAC)琼脂 90mm×10个/包 月桂基硫酸盐胰蛋白胨肉汤-MUG(LST-MUG) 1000ml/瓶 含新生霉素的缓冲胰蛋白胨大豆肉汤(BTSB+N)基础 250g/瓶 三糖铁(TSI)琼脂 250g/瓶 三糖铁(TSI)琼脂斜面 4ml×10支/盒 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 半固体琼脂 250g/瓶 半固体琼脂管 1ml×10支/盒 营养琼脂(NA) 250g/瓶 营养琼脂(NA) 90mm×10个/包 蛋白胨水 1ml×10支/盒 Kovacs氏靛基质试剂 10ml×4支/盒 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 山梨醇发酵管 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 纤维二糖发酵管 1ml×10支/盒 缓冲葡萄糖蛋白胨水(MR-VP培养基) 1ml×10支/盒 甲基红试剂 10ml×4支/盒 V-P试剂 10ml×4支/盒 西蒙氏柠檬酸盐琼脂斜面 4ml×10支/盒 大肠杆菌O157:H7套装生化鉴定管(10种)(SN0973) 12支/套×10套 无菌脱纤维绵羊血 100ml/瓶 肝浸液培养基 250g/瓶 胰蛋白胨琼脂培养基 250g/瓶 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 3%过氧化氢溶液 2ml×10支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阿拉伯糖发酵管 1ml×10支/盒 葡萄糖发酵管 1ml×10支/盒 半乳糖发酵管 1ml×10支/盒 硝酸盐肉汤 250g/瓶 硝酸盐肉汤 5ml×10支盒 硝酸盐还原试剂 10ml×4支/盒